Organische Chemie

Umweltschonende Synthesemethode für Carbonyl-Additionsprodukte

ChemikerInnen haben eine umweltschonende Synthesemethode für Carbonyl-Additionsprodukte entwickelt, die auch zur Herstellung pharmazeutischer Wirkstoffe genutzt werden könnte.

Nuno Maulide, Professor für Organische Chemie an der Universität Wien. © Frank Vinken/dwb, Max-Planck Society

Die Entwicklung von neuen Methoden in der organischen Synthese bildet die Grundlage für die Weiterentwicklung von pharmazeutischen Wirkstoffen, der Materialwissenschaft sowie der chemischen Biologie und spielt somit eine zentrale Rolle in unserem Alltag. Einem Forschungsteam um Nuno Maulide vom Institut für Organische Chemie an der Universität Wien gelang nun die Entwicklung der ersten hoch selektiven Methode zur direkten, abfallfreien Bindungsbildung zwischen Carbonylverbindungen und Alkenen. Die Ergebnisse sind kürzlich in den renommierten Journalen "Journal of the American Chemical Society" und "Angewandte Chemie" erschienen.

Die Carbonylgruppe findet man in verschiedensten Molekülen in unserem Körper, zum Beispiel in Hormonen wie Testosteron und Cortison, aber auch in Koffein und Vitamin C. Aufgrund dieser vielfältigen Vorkommen stellen die Verbindungen mit der charakteristischen Kohlenstoff-Sauerstoff-Doppelbindung auch eine wichtige Vorstufe für andere, höherwertige Verbindungen dar. "Üblicherweise werden für die Transformationen von Carbonylverbindungen metallbasierte Reagenzien verwendet. Diese sind allerdings hoch reaktiv, oft sogar pyrophor – beginnen also bei Kontakt mit Luftsauerstoff zu brennen – und generieren große Mengen an Abfall. Ein problematischer Zustand, bedenkt man die Wichtigkeit dieser Reaktionen", erklärt Jing Li, Co-Erstautor der Studien.

Anzeige

Die Vermeidung von eben solchen Reagenzien hat daher das Potenzial, die Chemie von Carbonylgruppen grundlegend zu revolutionieren. In jüngster Zeit zeigte sich die Addition von einfachen Rohstoffen wie Alkenen an Carbonylverbindungen zusehends als Alternative zu metallbasierten Reagenzien. "Bisher entwickelte Methoden für diese Reaktionen basieren allerdings auf teuren, giftigen Übergangsmetallkatalysatoren wie Ruthenium, Rhodium und Iridium: Alles Metalle, die oft unter fragwürdigen Bedingungen abgebaut werden – dazu werden auch verschiedenste Additive benötigt, die wiederum Abfall generieren", stellt Alexander Preinfalk vom Institut für Organische Chemie der Universität Wien fest. "Die von uns entwickelte Methode basiert auf günstigem, ungiftigem und absolut unbedenklichem Eisenchlorid als Katalysator. Zusätzlich kommt diese Methode ohne Additive aus und generiert somit kein einziges Abfallprodukt“, ergänzt Nuno Maulide, der Anfang dieses Jahres die Auszeichnung "Wissenschaftler des Jahres 2018" erhielt.

Das Forschungsteam bedient sich dabei eines chemischen Tricks: Einer sogenannten Hydrid-Verschiebung. "Zur Addition von Alkenen an Carbonylverbindungen benötigt man ein Reduktionsmittel. Dieses wird der Reaktion üblicherweise extern zugegeben und dann nach der Reaktion als Abfall ausgeschieden", erklärt Maulide. "Unsere Methode basiert auf einer Hydrid-Verschiebung, also einer Verschiebung eines negativ geladenen Wasserstoffatoms. Der Vorteil dabei ist, dass das Reduktionsmittel schon im Molekül vorhanden ist und somit kein Abfall entsteht."

Die Produkte können außerdem mit kompletter Kontrolle über die dreidimensionale Struktur hergestellt werden, was insbesondere für die pharmazeutische Wirkstoffentwicklung von entscheidender Bedeutung ist. Bisher war es aufgrund des Fehlens von selektiven Methoden enorm aufwendig, diese Carbonyl-Additionsprodukte kontrolliert zu erzeugen. "Wir haben im Rahmen unserer Studien Schlüsselintermediate für zwei biologisch aktive Verbindungen synthetisiert und für beide konnten wir die Länge des Synthesewegs im Vergleich zu bisherigen Routen halbieren – das ist ein beachtlicher Fortschritt", freut sich Maulide.

Publikationen:
Jing Li, Alexander Preinfalk, Nuno Maulide: Enantioselective Redox-Neutral Coupling of Aldehydes and Alkenes by an Iron-Catalyzed "Catch–Release" Tethering Approach, in: Journal of the American Chemical Society; DOI: 10.1021/jacs.8b12242

Jing Li, Alexander Preinfalk, Nuno Maulide: Diastereo‐ and Enantioselective Access to Stereotriads through a Flexible Coupling of Substituted Aldehydes and Alkenes, in: Angewandte Chemie International Edition; DOI: 10.1002/anie.201900801

Quelle: Universität Wien

Anzeige

Das könnte Sie auch interessieren

Anzeige
Anzeige

INTEGRA erweitert die Produktfamilie der manuellen EVOLVE-Pipetten

INTEGRA Biosciences erweitert die Produktfamilie der manuellen EVOLVE-Pipetten mit der Einführung einer neuen 16-Kanal-Pipette. Das neue Modell ist ergonomisch gestaltet, um die Produktivität zu steigern und die Handhabung durch den Benutzer zu verbessern, und ist in den Größen 10, 50 und 100 µl erhältlich.

mehr...
Anzeige
Anzeige
Anzeige
Anzeige

Highlight der Woche

NEU: LABO Kompass
HPLC Anwenderwissen im August 2019

Kompakte Orientierung in Ihrem Laboralltag. Richten Sie sich richtig aus! Anwenderwissen, Produkt- und Firmenpräsentationen, Anbieterverzeichnis, Trends, Termine uvm.

Zum Highlight der Woche...
Anzeige
Anzeige
Anzeige